Minimax Estimation with Thresholding and Its Application to Wavelet Analysis

نویسندگان

  • Harrison H. Zhou
  • J. T. Gene Hwang
چکیده

Many statistical practices involve choosing between a full model and reduced models where some coefficients are reduced to zero. Data were used to select a model with estimated coefficients. Is it possible to do so and still come up with an estimator always better than the traditional estimator based on the full model? The James–Stein estimator is such an estimator, having a property called minimaxity. However, the estimator considers only one reduced model, namely the origin. Hence it reduces no coefficient estimator to zero or every coefficient estimator to zero. In many applications including wavelet analysis, what should be more desirable is to reduce to zero only the estimators smaller than a threshold, called thresholding in this paper. Is it possible to construct this kind of estimators which are minimax? In this paper, we construct such minimax estimators which perform thresholding. We apply our recommended estimator to the wavelet analysis and show that it performs the best among the well–known estimator aiming simultaneously at estimation and model selection. Some of our estimators are also shown to be asymptotically optimal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Minimax Estimation with Thresholding and Its Application to Wavelet Analysis by Harrison

Many statistical practices involve choosing between a full model and reduced models where some coefficients are reduced to zero. Data were used to select a model with estimated coefficients. Is it possible to do so and still come up with an estimator always better than the traditional estimator based on the full model? The James–Stein estimator is such an estimator, having a property called min...

متن کامل

Thresholding methods to estimate copula density

Abstract: This paper deals with the problem of multivariate copula density estimation. Using wavelet methods we provide two shrinkage procedures based on thresholding rules for which knowledge of the regularity of the copula density to be estimated is not necessary. These methods, said to be adaptive, have proved to be very effective when adopting the minimax and the maxiset approaches. Moreove...

متن کامل

Block thresholding for a density estimation problem with a change-point

We consider a density estimation problem with a change-point. We develop an adaptive wavelet estimator constructed from a block thresholding rule. Adopting the minimax point of view under the Lp risk (with p ≥ 1) over Besov balls, we prove that it is near optimal.

متن کامل

A Data-Driven Block Thresholding Approach to Wavelet Estimation

A data-driven block thresholding procedure for wavelet regression is proposed and its theoretical and numerical properties are investigated. The procedure empirically chooses the block size and threshold level at each resolution level by minimizing Stein’s unbiased risk estimate. The estimator is sharp adaptive over a class of Besov bodies and achieves simultaneously within a small constant fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003